A Pso-based Neural Network Ensemble with the Application of Flame Combustion Diagnosis
نویسنده
چکیده
In thermal power station, pulverized coal furnace is widely used. It requires the chamber of furnace holding steady uniform flame, and ensureing that strong full combustion. This study has developed a neural network ensemble model to perform the judgement of combustion diagnosis based on the spectral distribution of the light intensity pulse signal of the flame. Compared with the single neural network, the two-stage integrated model of neural network ensemble, based on Bootstrap and electoral cooperative particle swarm optimization, can found the internal relations among inputs and outputs according to the learning of internal rules, and weaken the human factors in the weights determination. Based on the experiments on real scenario, the results show that the proposed model outperforms all the compared ones in perspective of the convergence speed of total error, and also obtains stable classification effect.
منابع مشابه
Diagnosis of hyperlipidemia in patients based on an artificial neural network with pso algorithm
One of the most common and most dangerous diseases of blood fats are such as heart disease, diabetes and stroke, heart and brain. It can control the timely diagnosis, treatment and then prevention of complications is become very effective even without using medicine. Heart disease and diabetes file if patients has useful information that can be used to estimate blood fat timely diagnosis. In th...
متن کاملEnsemble strategies to build neural network to facilitate decision making
There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...
متن کاملAn IPSO-Based Integrated Neural Classifier for Steam Turbine Vibration Fault Diagnosis
To compensate the flaws of single neural network such as low classification precision and long training time as well as weak generalized ability etc, the paper proposes a novel ensemble neural classifier for stream turbine vibration fault diagnosis with improved PSO-based. The method fully utilizes the advantages of PSO, such as fast seeking speed and easily realizing mode etc, the integrated t...
متن کاملA Neural Network-PSO Based Control for Brushless DC Motors for Minimizing Commutation Torque Ripple
This paper presents the method of reducing torque ripple of brushless DC (BLDC) motor. The commutation torque ripple is reduced by control of the DC link voltage during the commutation time. The magnitude of voltage and commutation time is estimated by a neural network and optimized with an optimization method named particle swarm optimization (PSO) algorithm analysis. The goal of optimizati...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کامل